3.2.19 \(\int \frac {x^4 (a+b \text {sech}^{-1}(c x))}{(d+e x^2)^2} \, dx\) [119]

3.2.19.1 Optimal result
3.2.19.2 Mathematica [C] (warning: unable to verify)
3.2.19.3 Rubi [A] (verified)
3.2.19.4 Maple [C] (warning: unable to verify)
3.2.19.5 Fricas [F]
3.2.19.6 Sympy [F]
3.2.19.7 Maxima [F(-2)]
3.2.19.8 Giac [F]
3.2.19.9 Mupad [F(-1)]

3.2.19.1 Optimal result

Integrand size = 21, antiderivative size = 840 \[ \int \frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=-\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{4 e^2 \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{4 e^2 \left (\sqrt {-d} \sqrt {e}+\frac {d}{x}\right )}+\frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}+\frac {b d \arctan \left (\frac {\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {-1+\frac {1}{c x}}}\right )}{2 \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}} e^2}+\frac {b d \arctan \left (\frac {\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {-1+\frac {1}{c x}}}\right )}{2 \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}} e^2}-\frac {b \arctan \left (\sqrt {-1+\frac {1}{c x}} \sqrt {1+\frac {1}{c x}}\right )}{c e^2}+\frac {3 \sqrt {-d} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 e^{5/2}}-\frac {3 \sqrt {-d} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 e^{5/2}}+\frac {3 \sqrt {-d} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 e^{5/2}}-\frac {3 \sqrt {-d} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 e^{5/2}}-\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 e^{5/2}}+\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 e^{5/2}}-\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 e^{5/2}}+\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 e^{5/2}} \]

output
x*(a+b*arcsech(c*x))/e^2-b*arctan((-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/c/e^2+ 
3/4*(a+b*arcsech(c*x))*ln(1-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d 
)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(5/2)-3/4*(a+b*arcsech(c*x 
))*ln(1+c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^ 
2*d+e)^(1/2)))*(-d)^(1/2)/e^(5/2)+3/4*(a+b*arcsech(c*x))*ln(1-c*(1/c/x+(-1 
+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))*(-d)^ 
(1/2)/e^(5/2)-3/4*(a+b*arcsech(c*x))*ln(1+c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c 
/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(5/2)-3/4*b* 
polylog(2,-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)- 
(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(5/2)+3/4*b*polylog(2,c*(1/c/x+(-1+1/c/x)^( 
1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^( 
5/2)-3/4*b*polylog(2,-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2 
)/(e^(1/2)+(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(5/2)+3/4*b*polylog(2,c*(1/c/x+( 
-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))*(-d 
)^(1/2)/e^(5/2)-1/4*d*(a+b*arcsech(c*x))/e^2/(-d/x+(-d)^(1/2)*e^(1/2))+1/4 
*d*(a+b*arcsech(c*x))/e^2/(d/x+(-d)^(1/2)*e^(1/2))+1/2*b*d*arctan((1+1/c/x 
)^(1/2)*(c*d-(-d)^(1/2)*e^(1/2))^(1/2)/(-1+1/c/x)^(1/2)/(c*d+(-d)^(1/2)*e^ 
(1/2))^(1/2))/e^2/(c*d-(-d)^(1/2)*e^(1/2))^(1/2)/(c*d+(-d)^(1/2)*e^(1/2))^ 
(1/2)+1/2*b*d*arctan((1+1/c/x)^(1/2)*(c*d+(-d)^(1/2)*e^(1/2))^(1/2)/(-1+1/ 
c/x)^(1/2)/(c*d-(-d)^(1/2)*e^(1/2))^(1/2))/e^2/(c*d-(-d)^(1/2)*e^(1/2))...
 
3.2.19.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.46 (sec) , antiderivative size = 1270, normalized size of antiderivative = 1.51 \[ \int \frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx =\text {Too large to display} \]

input
Integrate[(x^4*(a + b*ArcSech[c*x]))/(d + e*x^2)^2,x]
 
output
(4*a*Sqrt[e]*x + (2*a*d*Sqrt[e]*x)/(d + e*x^2) + 4*b*Sqrt[e]*x*ArcSech[c*x 
] + (b*d*ArcSech[c*x])/((-I)*Sqrt[d] + Sqrt[e]*x) + (b*d*ArcSech[c*x])/(I* 
Sqrt[d] + Sqrt[e]*x) - 6*a*Sqrt[d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]] - (8*b*Sqrt 
[e]*ArcTan[Tanh[ArcSech[c*x]/2]])/c + 12*b*Sqrt[d]*ArcSin[Sqrt[1 - (I*Sqrt 
[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTanh[(((-I)*c*Sqrt[d] + Sqrt[e])*Tanh[ArcSec 
h[c*x]/2])/Sqrt[c^2*d + e]] - 12*b*Sqrt[d]*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c* 
Sqrt[d])]/Sqrt[2]]*ArcTanh[((I*c*Sqrt[d] + Sqrt[e])*Tanh[ArcSech[c*x]/2])/ 
Sqrt[c^2*d + e]] + (3*I)*b*Sqrt[d]*ArcSech[c*x]*Log[1 + (I*(Sqrt[e] - Sqrt 
[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 6*b*Sqrt[d]*ArcSin[Sqrt[1 + (I 
*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e]))/(c 
*Sqrt[d]*E^ArcSech[c*x])] - (3*I)*b*Sqrt[d]*ArcSech[c*x]*Log[1 + (I*(-Sqrt 
[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] - 6*b*Sqrt[d]*ArcSin[S 
qrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2* 
d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] - (3*I)*b*Sqrt[d]*ArcSech[c*x]*Log[1 
- (I*(Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 6*b*Sqrt[d 
]*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + 
Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + (3*I)*b*Sqrt[d]*ArcSech[c* 
x]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] - 6 
*b*Sqrt[d]*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(S 
qrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] - (I*b*Sqrt[d]*S...
 
3.2.19.3 Rubi [A] (verified)

Time = 2.86 (sec) , antiderivative size = 900, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6857, 6374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 6857

\(\displaystyle -\int \frac {x^2 \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{\left (\frac {d}{x^2}+e\right )^2}d\frac {1}{x}\)

\(\Big \downarrow \) 6374

\(\displaystyle -\int \left (\frac {\left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) x^2}{e^2}-\frac {d \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e^2 \left (\frac {d}{x^2}+e\right )}-\frac {d \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e \left (\frac {d}{x^2}+e\right )^2}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {x \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e^2}+\frac {3 \sqrt {-d} \log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right ) \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 e^{5/2}}-\frac {3 \sqrt {-d} \log \left (\frac {\sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}-\sqrt {d c^2+e}}+1\right ) \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 e^{5/2}}+\frac {3 \sqrt {-d} \log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right ) \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 e^{5/2}}-\frac {3 \sqrt {-d} \log \left (\frac {\sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}+\sqrt {d c^2+e}}+1\right ) \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 e^{5/2}}-\frac {d \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 e^2 \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {d \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 e^2 \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}+\frac {b d \arctan \left (\frac {\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {\frac {1}{c x}-1}}\right )}{2 \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}} e^2}+\frac {b d \arctan \left (\frac {\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {\frac {1}{c x}-1}}\right )}{2 \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}} e^2}-\frac {b \arctan \left (\sqrt {\frac {1}{c x}-1} \sqrt {1+\frac {1}{c x}}\right )}{c e^2}-\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 e^{5/2}}+\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 e^{5/2}}-\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 e^{5/2}}+\frac {3 b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 e^{5/2}}\)

input
Int[(x^4*(a + b*ArcSech[c*x]))/(d + e*x^2)^2,x]
 
output
-1/4*(d*(a + b*ArcCosh[1/(c*x)]))/(e^2*(Sqrt[-d]*Sqrt[e] - d/x)) + (d*(a + 
 b*ArcCosh[1/(c*x)]))/(4*e^2*(Sqrt[-d]*Sqrt[e] + d/x)) + (x*(a + b*ArcCosh 
[1/(c*x)]))/e^2 + (b*d*ArcTan[(Sqrt[c*d - Sqrt[-d]*Sqrt[e]]*Sqrt[1 + 1/(c* 
x)])/(Sqrt[c*d + Sqrt[-d]*Sqrt[e]]*Sqrt[-1 + 1/(c*x)])])/(2*Sqrt[c*d - Sqr 
t[-d]*Sqrt[e]]*Sqrt[c*d + Sqrt[-d]*Sqrt[e]]*e^2) + (b*d*ArcTan[(Sqrt[c*d + 
 Sqrt[-d]*Sqrt[e]]*Sqrt[1 + 1/(c*x)])/(Sqrt[c*d - Sqrt[-d]*Sqrt[e]]*Sqrt[- 
1 + 1/(c*x)])])/(2*Sqrt[c*d - Sqrt[-d]*Sqrt[e]]*Sqrt[c*d + Sqrt[-d]*Sqrt[e 
]]*e^2) - (b*ArcTan[Sqrt[-1 + 1/(c*x)]*Sqrt[1 + 1/(c*x)]])/(c*e^2) + (3*Sq 
rt[-d]*(a + b*ArcCosh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(S 
qrt[e] - Sqrt[c^2*d + e])])/(4*e^(5/2)) - (3*Sqrt[-d]*(a + b*ArcCosh[1/(c* 
x)])*Log[1 + (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e])]) 
/(4*e^(5/2)) + (3*Sqrt[-d]*(a + b*ArcCosh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^ 
ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(4*e^(5/2)) - (3*Sqrt[-d]* 
(a + b*ArcCosh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] 
+ Sqrt[c^2*d + e])])/(4*e^(5/2)) - (3*b*Sqrt[-d]*PolyLog[2, -((c*Sqrt[-d]* 
E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e]))])/(4*e^(5/2)) + (3*b*Sqrt 
[-d]*PolyLog[2, (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e] 
)])/(4*e^(5/2)) - (3*b*Sqrt[-d]*PolyLog[2, -((c*Sqrt[-d]*E^ArcCosh[1/(c*x) 
])/(Sqrt[e] + Sqrt[c^2*d + e]))])/(4*e^(5/2)) + (3*b*Sqrt[-d]*PolyLog[2, ( 
c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(4*e^(5/2)...
 

3.2.19.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6374
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d 
 + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 6857
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x 
^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0 
] && IntegersQ[m, p]
 
3.2.19.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 111.63 (sec) , antiderivative size = 1006, normalized size of antiderivative = 1.20

method result size
parts \(\text {Expression too large to display}\) \(1006\)
derivativedivides \(\text {Expression too large to display}\) \(1031\)
default \(\text {Expression too large to display}\) \(1031\)

input
int(x^4*(a+b*arcsech(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
a*(1/e^2*x-1/e^2*d*(-1/2*x/(e*x^2+d)+3/2/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2 
))))+b/c^5*(1/2*x*c^5*arcsech(c*x)*(2*c^2*e*x^2+3*c^2*d)/e^2/(c^2*e*x^2+c^ 
2*d)-2/e^2*c^4*arctan(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))-3/16/e^3*c^6 
*d*sum((_R1^2*c^2*d+c^2*d+4*e)/_R1/(_R1^2*c^2*d+c^2*d+2*e)*(arcsech(c*x)*l 
n((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)+dilog((_R1-1/c/x-(-1+1 
/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^ 
2+c^2*d))+3/16/e^3*c^6*d*sum((_R1^2*c^2*d+4*_R1^2*e+c^2*d)/_R1/(_R1^2*c^2* 
d+c^2*d+2*e)*(arcsech(c*x)*ln((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)) 
/_R1)+dilog((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)),_R1=RootOf( 
c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))+1/2*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+2 
*e)*d)^(1/2)*(c^2*d*(e*(c^2*d+e))^(1/2)+2*c^2*d*e+2*e^2+2*(e*(c^2*d+e))^(1 
/2)*e)*c*arctanh(c*d*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/((-c^2*d+2*( 
e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/e^2/(c^2*d+e)/d^2+1/2*((c^2*d+2*(e*(c^2* 
d+e))^(1/2)+2*e)*d)^(1/2)*(-c^2*d*(e*(c^2*d+e))^(1/2)+2*c^2*d*e+2*e^2-2*(e 
*(c^2*d+e))^(1/2)*e)*c*arctan(c*d*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2)) 
/((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2))/e^2/(c^2*d+e)/d^2-1/2*(-(c^2 
*d-2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*c 
*arctanh(c*d*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/((-c^2*d+2*(e*(c^2*d 
+e))^(1/2)-2*e)*d)^(1/2))/d^2/e^2-1/2*((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d 
)^(1/2)*(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*c*arctan(c*d*(1/c/x+(-1+1/c/x...
 
3.2.19.5 Fricas [F]

\[ \int \frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x^{4}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^4*(a+b*arcsech(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*x^4*arcsech(c*x) + a*x^4)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.2.19.6 Sympy [F]

\[ \int \frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^{4} \left (a + b \operatorname {asech}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate(x**4*(a+b*asech(c*x))/(e*x**2+d)**2,x)
 
output
Integral(x**4*(a + b*asech(c*x))/(d + e*x**2)**2, x)
 
3.2.19.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^4*(a+b*arcsech(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.19.8 Giac [F]

\[ \int \frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x^{4}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^4*(a+b*arcsech(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
integrate((b*arcsech(c*x) + a)*x^4/(e*x^2 + d)^2, x)
 
3.2.19.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^4\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((x^4*(a + b*acosh(1/(c*x))))/(d + e*x^2)^2,x)
 
output
int((x^4*(a + b*acosh(1/(c*x))))/(d + e*x^2)^2, x)